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My research works and projects lie at the intersection between geometric structures and dynam-
ical systems.

In the one hand, I am interested with rigidity phenomena for differentiable dynamical sys-
tems, especially of hyperbolic or partially hyperbolic type, and specifically when their invariant
distributions are highly regular. In this setting, I obtained in [MM22] a classification result for
three-dimensional partially hyperbolic diffeomorphisms of contact type with smooth invariant dis-
tributions, presented in Theorem A below. This result is obtained by studying an invariant rigid
geometric structure called path geometry, with the tools of Cartan geometries. Both of these
notions are introduced in paragraph 1.3, together with a related rigidity result obtained in col-
laboration with Elisha Falbel and Jose Miguel Veloso in [FMMV21], see Theorem B. Following
these two results, my first broad research project is to pursue a systematic study of the rigidity of
partially hyperbolic diffeomorphisms having smooth invariant distributions, by the means of rigid
geometric structures and Cartan geometries. I will present in paragraphs 2.1 and 2.2 two ongoing
projects in this direction.

I am also interested with the dual problem, aiming at describing those compact rigid geometric
structures that have a non-compact automorphism group. The research of new such examples in
the case of flat path geometries led me to construct in [MM21] a geometric compactification of
the geodesic flow of complete and non-compact hyperbolic surfaces, see Theorem C. These are
examples of closed three-manifolds locally modelled on the flag space PGL3(R)/Pmin (with Pmin

the Borel subgroup of upper triangular matrices), a geometry that is not fully understood yet and
generally interests me. In this second broad direction of research, I will present in paragraph 2.3
a specific question that I am interested with.

The third aspect of my current research is concerned with three-dimensional flows. I am inter-
ested with Anosov flows and their R-covered property in a project in collaboration with Federico
Salmoiraghi and Mario Shannon that I will present in paragraph 2.4. In a second project in collabo-
ration with Tali Pinsky that I will present in paragraph 2.5, we study a topological characterization
of conservative flows up to orbital equivalence.

1. Contributions

1.1. Contact-Anosov flows. Let us recall that a non-singular flow (φt) of class C∞ of a closed
manifold M is called Anosov, if its differential preserves a splitting TM = Es ⊕ Ec ⊕ Eu of the
tangent bundle, where Ec is the direction of the flow and Es and Eu are non-trivial distributions
verifying the following estimates (with respect to any Riemannian metric on M).

(1) The stable distribution Es is uniformly contracted by (φt), i.e. there are two constants
C > 0 and 0 < λ < 1 such that for any t ∈ R and x ∈ M :

(1.1)
∥∥∥Dxφt|Es

∥∥∥ ≤ Cλt.

(2) The unstable distribution Es is uniformly expanded by (φt), i.e. uniformly contracted by
(φ−t).

Important examples of three-dimensional Anosov flows are given by the geodesic flows of closed
hyperbolic surfaces Σ, acting on their unitary tangent bundle T1Σ. These flows have the following
specific properties among Anosov flows: their stable and unstable distributions are C∞ (while they
are in general only Hölder continuous), and the sum Es ⊕Eu is furthermore a contact distribution.
We recall that a plane field ξ of a three-dimensional manifold is called contact if it is nowhere
integrable, or more precisely if it is locally the kernel of a contact form θ, i.e. a one-forme such
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that θ ∧ dθ does not vanish. A beautiful result of Étienne Ghys in [Ghy87] says that, up to finite
coverings and orbit equivalence1, the geodesic flows of closed hyperbolic surfaces are in fact the only
examples of three-dimensional Anosov flows whose stable and unstable distributions are C∞ and
such that Es ⊕Eu is a contact distribution. Ghys actually proves that all these flows are smoothly
conjugated to algebraic examples (the right diagonal flow on compact quotients of PSL2(R)), and
we will thus call them the algebraic contact-Anosov flows.

1.2. Partially hyperbolic diffeomorphisms of contact type. The result of [Ghy87] is a strik-
ing expression of the dynamical rigidity that can be deduced from geometrical assumptions for the
case of flows, i.e. continuous-time dynamical systems. A thrilling question is then to know if
these results generalize to discrete-time dynamical systems. Natural discrete-time analogs for the
Anosov flows are the diffeomorphisms f of closed manifolds M , whose differential preserves a
splitting TM = Es ⊕ Ec ⊕ Eu (within non-zero distributions) such that Es (respectively Eu) is
uniformly contracted (resp. expanded) by Df . These diffeomorphisms are called partially hyper-
bolic2 (see [CP15] for a comprehensive introduction, and [HP18] for a general survey about the
classification problem) and received a lot of attention in the last decades. In this setting, I obtained
the following result.

Theorem A ([MM22, Theorem A]). Let f be a partially hyperbolic diffeomorphism of a three-
dimensional connected compact manifold M , whose invariant distributions Es, Eu and Ec are
smooth, such that Es ⊕ Eu is a contact distribution, and whose non-wandering set NW (f) equals
M . Then, up to finite coverings and iterates, f is C∞-conjugated to one of the following examples:

(1) the time-one map of a three-dimensional algebraic contact-Anosov flow;
(2) or a partially hyperbolic affine automorphism of a nil-Heis(3)-manifold.

Note that any diffeomorphism preserving a volume form satisfies the assumption NW (f) = M .
The second family of examples are defined on compact quotients Γ\Heis(3) of the three-dimensional
Heisenberg group by cocompact lattices, and induced by affine automorphisms of Heis(3) preserving
Γ (see for instance [MM22, §1.1] or [Sma67, Ham13] for a description of such algebraic examples).

Actually, the Theorem A does not rely on any uniformity concerning the contraction (respec-
tively expansion) of Es (resp. Eu) by Df . More precisely, let f be a diffeomorphism of a
three-dimensional closed manifold M having a dense orbit in M (this replaces the hypothesis
NW (f) = M), preserving a smooth splitting TM = Eα ⊕ Ec ⊕ Eβ with Eα ⊕ Eβ a contact
distribution, and assume that for any x ∈ M we have, for ε = α and ε = β:
(1.2) lim

n→+∞
∥Dxfn|Eε∥ = 0 or lim

n→−∞
∥Dxfn|Eε∥ = 0

with respect to some Riemannian metric on M . Then the conclusions of Theorem A hold on f (see
[MM22, Theorem B]). Let us emphasize that the assumption (1.2) is related to, though different
from, the notion of quasi-Anosov diffeomorphism of Mañé in [Mañ77].

1.3. Path geometries and Cartan geometries. The triplet S = (Es, Ec, Eu) preserved by
a partially hyperbolic diffeomorphism f of contact type as in Theorem A happens to be a rigid
geometric structure, and the rough idea is that the dynamical properties of the automorphism f
of S will imply a geometrical classification of S, giving in return a dynamical classification of f .

On a three-dimensional manifold, a pair L = (Eα, Eβ) of transverse line fields whose sum
is a contact distribution is called a path geometry. These structures are intimately linked with
the homogeneous space X of full flags of R3, endowed with a natural path geometry invariant
under the natural action of PGL3(R) on X. The flag space X plays for path geometries the role
played by the euclidean space for Riemannian metrics: it is the flat model. The notion of Cartan
geometry (originally due to Élie Cartan, see [Car10, Sha97, ČS09]) allows indeed to give a precise
meaning to the following idea: every three-dimensional path geometry L is a “curved version” of
the homogeneous space X, and enjoys a curvature whose vanishing is equivalent to L being flat,

1Two flows are orbit equivalent if there exists a diffeomorphism conjugating their orbits.
2The denomination partially hyperbolic actually refers in the litterature to the case where the invariant splitting
Es ⊕ Ec ⊕ Eu is furthermore dominated. This assumption being however unnecessary in Theorem A and elsewhere
in this text, we allow ourselves to elude it to simplify the terminology, and refer the interested reader to [CP15].
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i.e. locally isomorphic to X. The tools of Cartan geometries play a crucial role in the classification
of Theorem A.

In Theorem A, even if the diffeomorphisms are only assumed to preserve the triplet (Es, Eu, Ec),
the classification shows a posteriori that they preserve in fact a global contact form θ of kernel
Es ⊕ Eu. In other words, they preserve the triplet T = (Es, Eu, θ), that we call a strict path
structure. In [GD91], a general program was introduced for studying, and possibly classifying
those compact rigid geometric structures having a non-compact automorphism group. In this
direction, we obtained with Elisha Falbel and Jose Miguel Veloso the following result concerning
strict path structures.
Theorem B ([FMMV21, Theorem 1.1]). Let (M, T ) be a three-dimensional closed and connected
strict path structure, whose automorphism group is non-compact and has a dense orbit. Then
(M, T ) is isomorphic to one of the family of examples appearing in Theorem A.
1.4. Compactifications of path geometries. All the diffeomorphisms of Theorem A are con-
servative (i.e. preserve a volume form), and moreover preserve a line field Ec transverse to the
contact distribution Es⊕Eu. A first reasonable problem to understand the diversity of path geome-
tries with large automorphism groups is thus to exhibit path geometries enjoying non-conservative
automorphisms that are non-equicontinuous (i.e. generate a non-compact subgroup of the auto-
morphism group) and moreover essential: they preserve no line field transverse to the contact
distribution. For any (complete) hyperbolic surface Σ, the unitary tangent bundle T1Σ is endowed
with a natural path geometry LΣ invariant by the geodesic flow, for which I obtained the following.
Theorem C ([MM21, Theorem A]). Let g1, . . . , gd be hyperbolic elements of PSL2(R) with pairwise
distinct fixed points on the boundary ∂∞H2. Then there exists integers ri > 0 such that the
hyperbolic surface Σ = ⟨gr1

1 , . . . , grd
d ⟩\H2 verifies the following.

(1) The path geometry (T1Σ, LΣ) admits a compactification (M, L).
(2) Furthermore, the geodesic flow of T1Σ extends to a non-equicontinuous, non-conservative

and essential automorphism flow of (M, L).
The first statement of this theorem relies on the study of the action of “Schottky” discrete sub-

groups of PGL3(R) on the flag space X, which provides an independent and elementary proof of
the existence of open subsets of the flag space with proper and cocompact action of these Schot-
tky subgroups. These domains of discontinuity, also provided by general results about Anosov
representations in [GW12, KLP18, BPS19], are here obtained by constructing explicit fundamen-
tal domains for the action. This is done by a precise analysis of the dynamics of PGL3(R) on
X, allowing to obtain the dynamical properties of the compactified geodesic flow in the second
statement.

2. Ongoing and future projects

2.1. Higher-dimensional partially hyperbolic diffeomorphisms of contact type. Theo-
rem A can be seen as an analog for partially hyperbolic diffeomorphisms of Ghys classification in
[Ghy87] of three-dimensional contact-Anosov flows with smooth invariant distributions. In 1992,
Ghys theorem was generalized in higher dimensions by Benoist, Foulon and Labourie in [BFL92]:
any contact-Anosov flow with smooth stable and unstable distributions is, up to finite coverings and
orbit equivalence, the geodesic flow of a closed locally symmetric Riemannian manifold of strictly
negative curvature. It is thus natural to look for a discrete-time analog of this classification, that
is for a higher-dimensional analog of Theorem A. We are now interested in partially hyperbolic
diffeomorphisms f in any (odd) dimension, having a dense orbit, smooth invariant distributions,
and for which Es ⊕Eu is a contact distribution. In a work in progress with Elisha Falbel, we study
this problem under the additional assumption that the diffeomorphism preserves a contact form
of kernel Es ⊕ Eu. The pair (Es, Eu) is then again a f -invariant rigid geometric structure, called
Lagrangian contact structure. But going from the case of Anosov flows to the one of partially
hyperbolic diffeomorphisms completely changes the situation. A critical difference is for instance
that in the former case, the geometric structure is soon found to be locally homogeneous every-
where, whereas it is so only on a dense open subset of the manifold in the latter (as a consequence
of Gromov’s “open-dense orbit theorem”, see [Gro88]). This requires to use the Cartan geometry
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defined by (Es, Eu), which happens to be significantly more complex than the three-dimensional
one – a major difference being that there are multiple local models in higher dimensions.

2.2. Rigidity of three-dimensional partially hyperbolic diffeomorphisms. Ghys actually
classifies in [Ghy87] all three-dimensional Anosov flows with smooth stable and unstable distri-
butions. A natural project is then to extend Theorem A by classifying all the three-dimensional
partially hyperbolic diffeomorphisms having smooth invariant distributions Es, Ec and Eu – wether
Es ⊕ Eu is contact or not. A first result was obtained in this direction in [CPRH20] under the
following strong additional restrictions on the partially hyperbolic diffeomorphism f : Df reads as
a constant (diagonal) matrix in some global frame of vector fields generating (Es, Ec, Eu), and f
has a dense orbit. This result was recently precised in [AM21]3 with a new geometrical proof, which
is a motivation to look at the general question with geometrical eyes, i.e. to consider (Es, Ec, Eu)
as a geometric structure whose behaviour differs between the open subset O ⊂ M where Es ⊕ Eu

is contact and its complement. The case O = M is the one of contact-type partially hyperbolic
diffeomorphisms classified in Theorem A. The only known examples for which O is a strict open
subset of M are C∞-conjugated to the suspension of an Anosov automorphism of the two-torus,
in which case the distribution Es ⊕ Eu is integrable and O is thus empty. This suggests that
O ̸= ∅ should imply that O = M : “if Es ⊕ Eu is contact somewhere, it is contact everywhere”
– a conjecture supported by several geometrical evidences. This is a particular case of a more
general problem that interests me, that of a degenerating geometric structure defined by invariant
distributions – here, the path geometry L = (Es, Eu) degenerates on the boundary ∂O.

2.3. Path geometries and compactifications. The examples constructed in Theorem C are a
motivation to construct new flat three-dimensional path geometries, i.e. (PGL3(R), X)-structures
with the language of Ehresman-Thurston (see for instance [Thu97, Chapter 3]). Barbot con-
structed in [Bar10] a large family of such structures whose holonomies are Anosov representations
of a surface group into PGL3(R). In [FT15], Falbel and Thebaldi develop a general method of
construction of such structures (via gluings of tetrahedra in X), which can be seen as an analog for
path geometries of Thurston’s construction of hyperbolic structures on the complement of a knot
in S3 (see [Thu97] again), and obtain by this way a (PGL3(R), X)-structure on an open complete
hyperbolic three-manifold. The existence of such a structure on a closed hyperbolic three-manifold
is an open problem so far, and we would like to understand, in collaboration with Elisha Falbel,
if the methods of compactification developed in [MM21] could allow to construct such a structure
by “compactifying” the one of [FT15].

2.4. R-covered Anosov flows. A natural and important geometrical object associated to an
Anosov flow (φt) on a three-dimensional closed manifold M , is the weak stable foliation Fsc,
tangent to the plane distribution Es ⊕ Rdφt

dt . Once lifted in the universal cover M̃ , it always
becomes a foliation by planes whose space of leaves Qs is a simply connected one-dimensional
manifold which is in general non-Hausdorff. Anosov flows for which Qs is a line distinguish thus
themselves has exceptional ones, and are called R-covered Anosov flows. Barbot showed in [Bar01]
that contact-Anosov flows, i.e. Anosov flows for which Es ⊕ Eu is contact, are R-covered. In fact
besides those, the only other known examples of R-covered Anosov flows are the trivial ones, which
are the suspensions of hyperbolic automorphisms of the two-torus. This is why a long-standing
conjecture states that R-covered Anosov flows that are not conjugated to suspensions are orbit-
equivalent to contact-Anosov flows. This is the problem that we address in a work in progress
with Federico Salmoiraghi and Mario Shannon.

2.5. Topological characterization of conservative flows in dimension three. The works of
Asimov [Asi76] and Sullivan [Sul76] gave sufficient conditions for a non-singular flow to be isotopic
to a conservative one. These results leave however open the question of a topological condition for
such flows to be orbit-equivalent to a conservative one. A natural obstruction in dimension three
is the existence of a separating torus transverse to the flow, and results of Brunella [Bru93] and
Asaoka [Asa08] show that this is indeed the only obstruction for Anosov flows. It is likely that

3In [AM21], the framing only needs to be C1 instead of C2 and the topological transitivity assumption is dropped.
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it remains the only one for any non-singular three-dimensional flow, which is the subject of an
ongoing project in collaboration with Tali Pinsky.

References
[AM21] Souheib Allout and Kambiz Moghaddamfar. On partially hyperbolic diffeomorphisms in dimension three

via a notion of autonomous dynamics. arXiv:2110.01735 [math], October 2021.
[Asa08] Masayuki Asaoka. On invariant volumes of codimension-one Anosov flows and the Verjovsky conjecture.

Inventiones mathematicae, 174(2):435, August 2008.
[Asi76] Daniel Asimov. Homotopy to divergence-free vector fields. Topology, 15:349–352, 1976.
[Bar01] Thierry Barbot. Plane affine geometry and Anosov flows. Annales scientifiques de l’École Normale

Supérieure, 34(6):871–889, 2001.
[Bar10] Thierry Barbot. Three-dimensional Anosov flag manifolds. Geometry & Topology, 14(1):153–191, 2010.
[BFL92] Yves Benoist, Patrick Foulon, and François Labourie. Flots d’Anosov à distributions stable et instable

différentiables. Journal of the American Mathematical Society, 5(1):33–74, 1992.
[BPS19] Jairo Bochi, Rafael Potrie, and Andrés Sambarino. Anosov representations and dominated splittings.

Journal of the European Mathematical Society (JEMS), 21(11):3343–3414, 2019.
[Bru93] Marco Brunella. Separating the basic sets of a nontransitive Anosov flow. Bulletin of the London Math-

ematical Society, 25(5):487–490, 1993.
[Car10] Élie Cartan. Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second

ordre. Ann. Sci. École Norm. Sup. (3), 27:109–192, 1910.
[CP15] Sylvain Crovisier and Rafael Potrie. Introduction to partially hyperbolic dynamics, Lecture notes for a

minicourse at ICTP, July 2015. Available on the web-pages of the authors.
[CPRH20] Pablo D. Carrasco, Enrique Pujals, and Federico Rodriguez-Hertz. Classification of partially hyper-

bolic diffeomorphisms under some rigid conditions. Ergodic Theory and Dynamical Systems, pages 1–12,
October 2020.

[ČS09] Andreas Čap and Jan Slovák. Parabolic geometries I Background and general theory, volume 154 of
Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2009.

[FMMV21] E. Falbel, M. Mion-Mouton, and J. M. Veloso. Cartan connections and path structures with large
automorphism groups. International Journal of Mathematics, October 2021.

[FT15] Elisha Falbel and Rafael Thebaldi. A flag structure on a cusped hyperbolic 3-manifold. Pacific Journal
of Mathematics, 278(1):51–78, September 2015.

[GD91] Mikhail Gromov and Giuseppina D’Ambra. Lectures on transformation groups : geometry and dynamics.
Surveys in differential geometry, 1991.

[Ghy87] Étienne Ghys. Flots d’Anosov dont les feuilletages stables sont différentiables. Annales Scientifiques de
l’École Normale Supérieure. Quatrième Série, 20(2):251–270, 1987.

[Gro88] Michael Gromov. Rigid transformations groups. Géométrie différentielle (Paris, 1986), 33:65–139, 1988.
[GW12] Olivier Guichard and Anna Wienhard. Anosov representations: domains of discontinuity and applica-

tions. Inventiones mathematicae, 190(2):357–438, November 2012.
[Ham13] Andy Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete & Continuous Dynam-

ical Systems - A, 33:3641, 2013. arXiv: 1103.3724.
[HP18] Andy Hammerlindl and Rafael Potrie. Partial hyperbolicity and classification: a survey. Ergodic Theory

and Dynamical Systems, 38(2):401–443, April 2018.
[KLP18] Michael Kapovich, Bernhard Leeb, and Joan Porti. Dynamics on flag manifolds: domains of proper

discontinuity and cocompactness. Geometry & Topology, 22(1):157–234, 2018.
[Mañ77] Ricardo Mañé. Quasi-Anosov Diffeomorphisms and Hyperbolic Manifolds. Transactions of the American

Mathematical Society, 229:351–370, 1977.
[MM21] Martin Mion-Mouton. Geometrical compactifications of geodesic flows and path structures.

arXiv:2112.02900 [math], December 2021. Accepted in Geometriae Dedicata.
[MM22] Martin Mion-Mouton. Partially hyperbolic diffeomorphisms and Lagrangian contact structures. Ergodic

Theory and Dynamical Systems, 42(8):2583–2629, August 2022.
[Sha97] R.W. Sharpe. Differential geometry: Cartan’s generalization of Klein’s Erlangen program. Foreword by

S. S. Chern. Berlin: Springer, 1997.
[Sma67] S. Smale. Differentiable dynamical systems. Bulletin of the American Mathematical Society, 73(6):747–

817, November 1967. Publisher: American Mathematical Society.
[Sul76] Dennis Sullivan. Cycles for the dynamical study of foliated manifolds and complex manifolds. Inventiones

Mathematicae, 36:225–255, 1976.
[Thu97] William P. Thurston. Three-Dimensional Geometry and Topology, Volume 1: Volume 1. Princeton Uni-

versity Press, 1997.

Martin Mion-Mouton, Department of Mathematics, Technion, Haifa 32000, Israel.
Email address: martinm@campus.technion.ac.il
URL: https://martinm.webgr.technion.ac.il/


	1. Contributions
	1.1. Contact-Anosov flows 
	1.2. Partially hyperbolic diffeomorphisms of contact type
	1.3. Path geometries and Cartan geometries
	1.4. Compactifications of path geometries

	2. Ongoing and future projects
	2.1. Higher-dimensional partially hyperbolic diffeomorphisms of contact type
	2.2. Rigidity of three-dimensional partially hyperbolic diffeomorphisms
	2.3. Path geometries and compactifications
	2.4. R-covered Anosov flows
	2.5. Topological characterization of conservative flows in dimension three

	References

